Publications:
- J. Kim, A. Lamb, S. Woodhead, S. Peyton Jones, C. Zhang, M. Allamanis
CoRGi: Content-Rich Graph Neural Networks with Attention
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD, 2022) - R. Tu, H. Kjellstrom, K. Zhang, C.Zhang
Optimal Transport for Causal Discovery
The International Conference on Learning Representations (ICLR, 2022) - P. Versteeg, C.Zhang, J. Mooij
Local Constraint-Based Causal Discovery under Selection Bias
The Conference on Causal Learning and Reasoning (CLeaR, 2022) - C. Ma , C. Zhang
Identifiable Generative models for Missing Not at Random Data Imputation
Conference on Neural Information Processing Systems (NeurIPS 2021) - H. Ritter, M. Kukla, C. Zhang, Y. Li
Sparse Uncertainty Representation in Deep Learning with Inducing Weights
Conference on Neural Information Processing Systems (NeurIPS 2021) - J. Grosse, C. Zhang, P. Hennig
Probabilistic DAG Search
Conference on Uncertainty in Artificial Intelligence (UAI 2021) - R. Tu, K. Zhang, H. Kjellstrom, C. Zhang
Optimal transport for causal discovery
ICML 2021 workshop on the Neglected Assumptions in Causal Inference - P. Morales-Alvarez, A. Lamb, S. Woodhead, S. Peyton Jones, M. Allamanis, C. Zhang
VICAUSE: Simultaneous missing value imputation and causal discovery
ICML 2021 workshop on the Neglected Assumptions in Causal Inference - A. Sharma, V. Syrgkanis, C. Zhang, E. Kiciman
DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions
ICML 2021 workshop on the Neglected Assumptions in Causal Inference - M. Klasson, H. Kjellstrom, C. Zhang
Learn the Time to Learn: Replay Scheduling for Continual Learning
ICML 2021 workshop on Theory and Foundation of Continual Learning - R. Zhang, Y. Li, C. De Sa, S. Devlin, C. Zhang
Meta-Learning for Variational Inference
International Conference on Artificial Intelligence and Statistics (AISTATS 2021) - V. Chandrasekaran, D. Edge, S. Jha, A. Sharma, C. Zhang, S. Tople
Causally Constrained Data Synthesis for Private Data Release
ICLR 2021 workshop on distributed & private ML - T. Rashid, C. Zhang, K. Ciosek
Estimating α-Rank by Maximizing Information Gain
AAAI Conference on Artificial Intelligence (AAAI 2021) - Z. Wang, S. Tschiatschek, S. Woodhead, J.M. Hernández-Lobato, S. Peyton Jones, R.G. Baraniuk and C. Zhang
Educational Question Mining At Scale: Prediction, Analysis and Personalization,
In Symposium on Educational Advances in Artificial Intelligence (AAAI-EAAI), 2021. - M. Klasson, C. Zhang, and H. Kjellström.
Using Variational Multi-view Learning for Classification of Grocery Items.
Patterns 1.8 (2020): 100143. - C. Ma, S. Tschiatschek, R. Turner, J.M.H. Lobato, C. Zhang,
VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data
Conference on Neural Information Processing Systems (NeurIPS 2020)
- X. Zhang*(first author), R.Tu*(first author), L.Yang, M. Liu, K. Zhang, C.Zhang
How do fair decisions fare in long-term qualification?
Conference on Neural Information Processing Systems (NeurIPS 2020) - C. Zhang, K.Zhang, Y. Li
A Causal View on Robustness of Neural Networks
Conference on Neural Information Processing Systems (NeurIPS 2020)
-
A. Lamb, E. Saveliev, Y. Li, S. Tschiatschek, C. Longden, S. Woodhead, J. M. Hernandez-Lobato, R. E. Turner, P. Cameron, C. Zhang
Contextual HyperNetworks for Novel Feature Adaptation
NeurIPS 2020 Workshop: Meta-Learning - P. J. Ball, Y. Li, A.Lamb, C. Zhang
A Study on Efficiency in Continual Learning Inspired by Human Learning
NeurIPS 2020 Workshop: BabyMind - H. Yin, Y. Li, S. Pan, C. Zhang, S. Tschiatschek
Reinforcement Learning with Efficient Active Feature Acquisition
NeurIPS 2020 Workshop: Learning Meets Combinatorial Algorithms - A.L. Popkes, H. Overweg, A. Ercole, Y. Li, J.M. Hernández-Lobato, Y. Zaykov, C. Zhang
Interpretable Outcome Prediction with Sparse Bayesian Neural Networks in Intensive Care
ICML 2020 Workshop on Healthcare Systems, Population Health, and the Role of Health-tech
[ArXiv] - T. Rashid, C. Zhang, K. Ciosek
Estimating α-Rank by Maximizing Information Gain
ICML 2020 Workshop on Real World Experiment Design and Active Learning
[pdf] - J. Beck, K. Ciosek, S. Devlin, S. Tschiatschek, C. Zhang, K. Hofmann,
AMRL: Aggregated Memory For Reinforcement Learning
International Conference on Learning Representations (ICLR 2020) - C. Zhang, J. Butepage, H. Kjellstrom, and S. Mandt,
Advances in Variational Inference,
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019
[ArXiv pdf] - R. Bamler*, C.Zhang*, M. Opper, S. Mandt* (Equal contribution)
Tightening Bounds for Variational Inference by Revisiting Perturbation Theory
Machine Learning Special Issue on Journal of Statistical Mechanics: Theory and Experiment (JSTATS), 2019
- W. Gong , S. Tschiatschek, S. Nowozin, R.E. Turner, J.M. Hernández-Lobato, C.Zhang
Icebreaker: Efficient Information Acquisition with Active Learning
Conference on Neural Information Processing Systems (NeurIPS 2019)
[ArXiv] - R. Tu, K. Zhang, B, Bertilson, H. Kjellstrom, C. Zhang
Neuropathic Pain Diagnosis Simulator for Causal Discovery Algorithm Evaluation
Conference on Neural Information Processing Systems (NeurIPS 2019)
[ArXiv] - M. Igl, K. Ciosek, Y. Li, S. Tschiatschek , C. Zhang, S. Devlin, K. Hofmann
Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck
Conference on Neural Information Processing Systems (NeurIPS 2019) - C. Zhang, Y. Li
A Causal View on Robustness of Neural Networks,
ICML Workshop on Understanding and Improving Generalization in Deep Learning, 2019
[PDF] - C. Ma, S. Tschiatschek, K. Palla, J.M.H. Lobato, S. Nowozin, C. Zhang,
EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE,
International Conference on Machine Learning (ICML), 2019
[PDF] - C. Hamesse, R. Tu, P. Ackermann, H. Kjellstrom, and C. Zhang,
Simultaneous Measurement Imputation and Outcome Prediction for Achilles Tendon Rupture Rehabilitation,
Conference on Machine Learning for Healthcare (MLHC), 2019
[ArXiv] - R. Tu*, C. Zhang*, P. Ackermann, K. Mohan, H. Kjellström, K. Zhang*,
Causal discovery in the presence of missing data,
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
( * equal contribution)
[arXiv] - C. Zhang, C. Öztireli, S. Mandt, G. Salvi,
Active Mini-Batch Sampling using Repulsive Point Processes,
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI), 2019 (acceptance rate 16.2%; Oral)
[arXiv] - M. Klasson, C. Zhang, and H. Kjellström,
A hierarchical grocery store image dataset with visual and semantic labels.
IEEE Winter Conference on Applications of Computer Vision (WACV), 2019. - C. Ma, W. Gong, J.M. Hernandez-Lobato, N. Koenigstein, S. Nowozin, C. Zhang,
Partial VAE for Hybrid Recommender System
NIPS Workshop on Bayesian Deep Learning, 2018
[pdf] -
J. Butepage, J. He, C. Zhang, L.Sigal, G. Mori, S. Mandt,
Informed Priors for Deep Representation Learning,
Symposium on Advances in Approximate Bayesian Inference, 2018 -
T.F. Fu, C. Zhang, S. Mandt,
Continuous Word Embedding Fusion via Spectral Decomposition,
The SIGNLL Conference on Computational Natural Language Learning (CoNLL), 2018
[Preprint] [Appendix] -
T. Ding, C. Zhang, M. Bos,
Causal Feature Selection for Individual Characteristics Prediction,
International Conference on Tools with Artificial Intelligence (ICTAI), 2018
[arXiv] - C. Zhang, C. Oztireli and S. Mandt,
Diversified Mini-Batch Sampling using Repulsive Point Processes,
NIPS Workshop on Advances in Approximate Bayesian Inference, 2017
[PDF] - M. Klasson, K. Zhang, B. Bertilson, C. Zhang and H. Kjellström,
Causality Refined Diagnostic Prediction,
NIPS Workshop on Machine Learning for Health (ML4H), 2017
[PDF] - R. Bamler*, C. Zhang*, M. Opper and S. Mandt,
Perturbative Black Box Variational Inference,
Conference on Neural Information Processing Systems (NIPS 2017)(*Joint first authorship; order decided by coin flip.) [pdf] - C. Zhang, H. Kjellström, and S. Mandt,
Determinantal Point Processes for Mini-batch Diversification,
Uncertainty in Artificial Intelligence (UAI 2017). Plenary talk
[pdf] - C. Zhang,
Structured Representation Using Latent Variable Models,
PhD Thesis, 2016
[PDF] - C. Zhang, S. Mandt and H. Kjellström,
Balanced Population Stochastic Variational Inference,
NIPS Workshop on Advances in Approximate Bayesian Inference, 2016
[pdf] - A. Qu, C. Zhang, P. Ackermann and H. Kjellström,
Bridging Medical Data Inference to Achilles Tendon Rupture Rehabilitation,
NIPS Workshop on Machine Learning for Health, 2016
[pdf] - C. Zhang, H. Kjellström and B. C. Bertilson,
Diagnostic Prediction Using Discomfort Drawings,
NIPS Workshop on Machine Learning for Health, 2016 (This is an extension of the MLHC conference paper)
[pdf] - C. Zhang, H. Kjellström and C.H. Ek,
Inter-Battery Topic Representation Learning
European Conference on Computer Vision (ECCV), 2016
[pdf] [Supplement] - C. Zhang, H. Kjellström, C.H. Ek and B. C. Bertilson,
Diagnostic Prediction Using Discomfort Drawing with IBTM,
Machine Learning in Health Care Conference, 2016
[pdf] - K. Zhang, J. Karlgren, C. Zhang, J. Lagergren.
Viewpoint and Topic Modeling of Current Events,
arXiv, 2016 [arXiv] - C. Zhang, M. Gartrell, T. P. Minka, Y. Zaykov and J. Guiver,
GroupBox: A generative model for group recommendation,
Microsoft Research technical report; MSR-TR-2015-61
[PDF] - C. Zhang and H. Kjellström,
How to Supervise Topic Models,
ECCV workshop on Graphical Models in Computer Vision (ECCVws 2014, GMCV) (oral)
[PDF][Supplement][Slides] - C. Zhang, C.H. Ek, X. Gratal, F. T. Pokorny and H. Kjellström,
Supervised Hierarchical Dirichlet Processes with Variational Inference,
IEEE ICCV workshop on Inference for probabilistic graphical models (ICCVws 2013, Infer PGM) (oral)
[PDF] [Supplement][Slides][Poster][Code] - C. Zhang, D. Song and H. Kjellström,
Contextual Modeling with Labeled Multi-LDA,
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013)
[PDF][Bibtex] [Slides] - C. Zhang, C.H. Ek, A. Damianou, H. Kjellström,
Factorized Topic Models.
International Conference on Learning Representations 2013, (ICLR 2013)
[PDF] [Bibtex][Poster] - C. Zhang and H. Kjellström,
Multi-Class Detection and Segmentation of Objects in Depth
[PDF] [Bibtex]